- Para ello, sintetizan semiconductores amorfos y nanoestructurados mediante técnicas de depósito físico y químico

Si bien las tecnologías fotovoltaicas y de baterías tienen avances importantes, aún existen limitaciones relacionadas con la densidad de energía, degradación a largo plazo y sostenibilidad de los procesos de fabricación. En el caso particular de los sistemas termoeléctricos, el desafío es incrementar su rendimiento, sin comprometer su estabilidad mecánica y química.

Por ello, investigadores de la Facultad de Ciencias de la Electrónica (FCE) de la BUAP desarrollan dispositivos híbridos de recolección de energía, basados en la integración de generadores termoeléctricos, fotovoltaicos y piezoeléctricos, tanto en formato de película delgada, como en materiales en volumen.

La pertinencia de este proyecto radica en la generación de conocimiento científico-tecnológico, el impulso de opciones para la eficiencia energética en el sector automotriz y sistemas urbanos inteligentes, y en la aportación de soluciones sostenibles para diversificar fuentes de energía limpia.

Este proyecto es realizado, desde 2022, por Carlos Roberto Ascencio Hurtado, quien efectúa una estancia de investigación en la FCE, bajo la supervisión del doctor Roberto Carlos Ambrosio Lázaro; también participa Eduardo Yoyontzin García Villegas, estudiante de la Maestría en Ingeniería Electrónica, en la caracterización de generadores termoeléctricos comerciales. Además, colaboran expertos del Instituto Nacional de Astrofísica, Óptica y Electrónica, del Centro de Investigación en Materiales Avanzados (unidades Chihuahua y Monterrey) y de la Universidad Autónoma de Ciudad Juárez.

La propuesta de los académicos de la BUAP consiste en la síntesis de semiconductores amorfos y nanoestructurados mediante técnicas de depósito físico y químico, así como su caracterización estructural, eléctrica, térmica y mecánica. De manera paralela, evalúan la gestión de la energía recolectada mediante convertidores electrónicos de potencia, lo que asegura la viabilidad de la integración de estos sistemas en entornos reales, como la industria automotriz y las aplicaciones urbanas.

Carlos Roberto Ascencio Hurtado, doctor en Ciencias de la Electrónica, indicó que las investigaciones sobre el desarrollo de materiales termoeléctricos de alto rendimiento se realizan en Norteamérica, Europa y Asia. No obstante, “la aportación diferenciadora de nuestro proyecto consiste en enfatizar la síntesis y caracterización de materiales amorfos y nanoestructurados”.

Asimismo, señaló que se “propone un esquema de integración híbrida entre dispositivos termoeléctricos, fotovoltaicos y piezoeléctricos, y considerar desde la etapa inicial la gestión de la energía mediante electrónica de potencia, lo que asegura que los desarrollos materiales no se limiten a resultados de laboratorio, sino que sean viables para la transferencia tecnológica hacia aplicaciones concretas”.

Entre los avances registrados, el investigador refirió la síntesis controlada de películas delgadas de silicio-germanio polimorfo hidrogenado (pm-SiGe:H) con propiedades ajustables para aplicaciones termoeléctricas; y el diseño preliminar de prototipos de generadores termoeléctricos y fotovoltaicos en materiales en volumen, con miras a su aplicación en sistemas automotrices.

Además de “la caracterización avanzada de propiedades estructurales, térmicas y eléctricas, incluyendo correlaciones entre propiedades y desempeño termoeléctrico en nanoescala; publicaciones en revistas indizadas y difusión en congresos especializados”, puntualizó.

Publicado en EDUCACIÓN

• Incorpora silicio, azufre y carbón obtenido de biomasa para mejorar la capacidad y el rendimiento

          Consultar redes sociales, tomar fotos y jugar videojuegos, sin preocuparse por la pila del celular, o viajar largas distancias en un auto eléctrico, son desafíos de la vida tecnológica y el tema de estudio de científicos alrededor del mundo. Entre ellos, el doctor Enrique Quiroga González, responsable del Laboratorio de Energía del Instituto de Física “Ing. Luis Rivera Terrazas” de la BUAP (IFUAP), quien con su investigación sintetiza y prueba nuevos materiales para incrementar la capacidad o el rendimiento de las baterías de ion de litio.

          Ante este reto, que implica reducir costos, el doctor Quiroga, también responsable del Cuerpo Académico “Estructuras de Baja Dimensionalidad” del IFUAP, trabaja en la incorporación de silicio, azufre y carbón obtenido de biomasa en los componentes de una batería. Cabe mencionar que estos materiales no son convencionales en estos dispositivos, pero son abundantes y de bajo costo.

          Una batería dispone de tres elementos principales: cátodo, ánodo y separador; este último se encarga de evitar un corto circuito entre los electrodos. El cátodo y el ánodo son los elementos “activos” de la batería, ya que en ellos es donde se almacena la carga. Estos elementos se conocen como electrodos.

          Algo importante en la investigación en baterías es lograr que los electrodos proporcionen la mayor capacidad posible por unidad de peso o volumen (capacidad específica). De esta forma, cada nueva generación de teléfonos celulares se puede usar por mucho más tiempo, con el mismo volumen de batería (los electrodos de las baterías poseen mayor capacidad específica en cada generación).

Un dispositivo viejo y nuevo a la vez

Aunque la tecnología para las baterías de litio fue desarrollada a principios de los años 80, su gran expansión ocurrió cuando Sony las incluyó en sus dispositivos. Desde su salida al mercado en los años 90, hasta hoy, sigue siendo la pila más usada en dispositivos móviles. Sin embargo, debido a la necesidad de incrementar su capacidad para aplicación en coches eléctricos y dispositivos móviles, el desarrollo e investigación de esta clase de dispositivos es ahora de prioridad mundial.

          Enrique Quiroga González, doctor en Ciencias Naturales por la Universidad de Kiel, en Alemania, junto con estudiantes de posgrado del IFUAP y colaboradores de otros institutos y facultades de la BUAP, pretende mejorar la capacidad del ánodo sustituyendo al grafito (material estándar de ánodos) por silicio. El silicio tiene una capacidad específica: es 10 veces mayor que el grafito.

          Además, este material tiene la bondad de poderse utilizar en diversas formas dentro de la batería: poroso, para mejorar el transporte de iones; en microhilos, para soportar mejor el estrés mecánico cuando se inserta litio; o con canales conductivos de carbón, “decorado” con partículas metálicas, para aumentar la velocidad de carga y descarga al mejorar la conductividad electrónica.

          Para el cátodo, el azufre presenta la capacidad de almacenamiento más alta. Sin embargo, los cátodos de este material aún presentan algunos problemas, principalmente su baja conductividad iónica y electrónica. Por ello, es importante mezclarlo con algún aditivo conductor de carbón.

          En el Laboratorio de Energía se ha carbonizado biomasa (principalmente cáscaras de frutas) y el producto carbonáceo se usa como soporte mecánico para el azufre, además de que le ayuda a conducir electricidad. La capacidad de los cátodos preparados de esta forma es similar a la reportada en la literatura científica. Por otro lado, también se empiezan a probar combinaciones de azufre con otros materiales catódicos, con la finalidad de lograr cátodos de alta capacidad y potencia instantánea.

Un área de estudio interdisciplinaria

A pesar de su utilidad, las pilas y baterías enfrentan diversos desafíos, entre ellos el medio ambiental, porque normalmente se encuentran compuestas por materiales pesados y tóxicos, como el cadmio y el plomo. Por lo tanto, requieren un manejo especial para ser desechadas y recicladas. Por otro lado, el trabajo con baterías involucra cuestiones de seguridad y diseño.

          Para reunir a pares involucrados en el desarrollo de dispositivos de almacenamiento de energía, en marzo de 2017 se creó la “Red Temática de Almacenamiento de Energía” del Conacyt, con la BUAP como sede (http://www.almacenamiento-energia.redtematica.mx/). La red consta de 150 miembros de 14 estados y más de 20 instituciones, tanto académicas como del sector industrial. El doctor Quiroga, coordinador de esta red, destacó la importancia de buscar nuevas formas de generación y almacenamiento de energía que satisfagan las necesidades actuales, así como disminuir costos. En esta tarea -dijo- se busca un acercamiento con la industria, con el fin de atender problemas y generar proyectos, a la par de apoyar la formación de recursos humanos.

Publicado en EDUCACIÓN

Consola de depuración de Joomla!

Sesión

Información del perfil

Uso de la memoria

Consultas de la base de datos